

1

Abstract—The ability to detect concept drift, i.e., a structural

change in the acquired datastream, and react accordingly is a
major achievement for intelligent sensing units. This ability allows
the unit for actively tuning the application to maintain high
performance, changing online the operational strategy, detecting
and isolating possible occurring faults to name a few tasks. In the
paper we consider a just-in-time strategy for adaptation: the
sensing unit reacts exactly when needed, i.e., when concept drift is
detected. Change detection tests (CDTs), designed to inspect
structural changes in industrial and environmental data, are here
coupled with adaptive k-NN and SVM classifiers, and suitably
retrained when the change is detected. Computational complexity
and memory requirements of the CDT and the classifier, precious
limited resources in embedded sensing, are taken into account in
the application design. We show that a hierarchical CDT coupled
with an adaptive resource-aware classifier is a suitable tool for
processing and classifying sequential streams of data.

Index Terms—Intelligent sensing, Active classifiers, Change
detection tests, k-NN and SVM classifiers

I. INTRODUCTION
HE adjective intelligent associated with a sensing unit can
be inflected differently, depending on the reference

community. As such, it is somehow intended as the ability to
make decisions, the capability to learn from external stimuli,
and the potentiality to execute computational intelligence
algorithms.

The above definitions, explicitly or implicitly, rely on a
computational framework receiving and processing incoming
acquisitions to accomplish the requested task. We generally
assume the stationarity hypothesis for data coming from an
industrial or environmental process and, in turn, stationarity for
the intelligent solution to be executed by the unit. In extreme
cases, the assumption is so implicitly integrated in our
algorithms that we even forget of its existence.

However, the real world is time variant and the stationarity

Manuscript received August 10, 2012; accepted January 11, 2013. This work
was supported partly by the FP7 EU Project-i-SENSE Making Sense of
Nonsense, Contract No:, INSFO-ICT-270428, the National Natural Science
Foundation of China (Nos. 61273136, 61034002), and visiting professorship of
Chinese Academy of Sciences.

Cesare Alippi is with Politecnico, di Milano, Italy and the State Key
Laboratory of Management and Control for Complex Systems, Institute of
Automation Chinese Academy of Sciences, China, Derong Liu, Dongbin Zhao
and Li Bu are with the State Key Laboratory of Management and Control for
Complex Systems, Institute of Automation Chinese Academy of Sciences,
Beijing 100190, China e-mail: cesare.alippi@polimi.it, derong.liu@ia.ac.cn,
dongbin.zhao@ia.ac.cn, bulipolly@gmail.com.

assumption generally holds for short periods of time
representing, da facto, a first-order hypothesis.

In fact, ageing effects affecting the readout electronics of the
transducer, soft and hard faults influencing the sensor unit,
changes in the phenomenon under observation (e.g., a plant)
introduce changes in the process generating the data. Such
concept drift represents a violation of the stationarity
hypothesis assumed during the design phase of the application
solution with the consequence that the application performance
decreases unless adaptive strategies are taken into account.

Detecting concept drift and reacting to it is then of
paramount importance in any industrial process and, from our
perspective, one of the main features that an intelligent sensing
unit should possess. Interestingly, our position is aligned with
Piaget’s psychological theory of human cognition [1], where
learning is described as a constant effort to maintain or achieve
balance between prior and new knowledge. As pointed out in
[2], when new knowledge cannot be accommodated under
existing schema because of severe conflict (i.e.,
non-stationarity), the need is to restructure the application to
create new schemata that supplement or replace the prior
knowledge base.

In the following, we consider an operational framework
where a model describing the incoming data is unavailable and
the application must be learned from the data themselves.
Moreover, we opt for an active approach, i.e., we envisage the
presence of a Change detection Test (CDT) inspecting
incoming data (or derived features) to discover if new data
underwent concept drift, react when the change is detected and
update the application afterwards.

[35] follows this framework by proposing a mechanism
where a sensor detects and responds to changes. Each sensor
builds a linear model for the incoming data and adapts the
sampling frequency (reaction aspect) if the new data cannot be
locally explained by the model anymore (change detection
aspect). There, detection can be easily cast within a CDT setup
by inspecting the residual between model prediction and
incoming data. A different approach investigating changes in
the Nyquist frequency with a CDT has been proposed in [36]
for energy-eager sensors: again the sampling frequency is
adapted in real time to reduce the energy consumption of the
sensing unit.

Clearly, by considering a CDT-based solution we construct a
general approach whose validity is well behind that of a
specific application, chosen in the sequel of classification type
for its relevance in industrial applications. Assessing the quality

Detecting and Reacting to Changes in Sensing
Units: the Active Classifier Case

Cesare Alippi, Fellow, IEEE, Derong Liu, Fellow, IEEE, Dongbin Zhao, Senior Member, IEEE, Li Bu

T

2

of the outcome product [3], validating a sensor [4], and
designing a fault diagnosis system with the fault identification
ability [5] are some immediate examples of industrial
applications requiring classification systems. The focus is then
more on applications requiring the inspection of changes
affecting the sensing datastream and its impact on the classifier
output than those affecting the relationship between sensing
data and the output of the classifier only. The reference setup is
that of figure 1 where the datastream provided by process P is
fed into the classifier and inspected by the CDT. If a change in
the datastream is detected the classifier is retrained/adapted
provided that supervised data are made available. Also the CDT
is reconfigured to detect further possible concept drift. If no
change is detected both CDT and application do not require
reconfiguration. The approach is hence sensor-centered since
we inspect data coming from sensors to detect a possible
change.

Fig. 1. The envisaged methodology. The “classifier” word can be substituted
with the more general “application” one.

A different scenario, say more classifier-centered, would

also inspect changes affecting the relationship assigning a class
to the inputs. If this is the case, the above approach can be
applied to the classification error datastream to be intended now
as a virtual sensor. Interested readers can refer to [37] for a
comprehensive analysis.

The paper extends conference paper [19] in several ways.
First in reviewing the existing literature so as to provide a more
complete and comprehensive analysis, second, in also
considering the ICI (Intersection of Confidence Intervals)-CDT
family recently made available in the literature, third, in
providing a complete experimental setup where computational
complexity and memory usage of resources-aware classifiers
are contrasted.

The structure of the paper is as follows. Section II presents
the related work. Section III introduces briefly the CUSUM and
ICI-based family of CDTs by providing advantages and
disadvantages as well as their validity range. Aspects related to
the design of an adaptive active JIT are given in section IV
where attention is devoted to computational and memory usage
issues. Finally, the experimental section V shows under which
conditions a solution should be preferred than the other.

II. RELATED WORK
The section introduces the related work on CDTs and

adaptive classifiers which can fit within a “detect and react”
framework to be executed in embedded system.

A. Change detection tests
While there exists a large literature mostly based on

statistical tests proposing parametric solutions for concept drift
assessment, fewer results are available for non-parametric tests.
In the parametric class we find classic textbook tests, e.g., the
Student t-test and the Fisher f-test [6], addressing changes
affecting the mean and the variance of the features, respectively.
A conjunct test on mean and variance requires a more
elaborated analysis, e.g., see [7], where a regression
technique-based test is proposed.

It must be immediately pointed out that parametric tests
require knowledge of the probability density functions and/or
priors on concept drift [6].

Nonparametric tests are more flexible tools, which do not
require unreasonable hypotheses [8]. For instance, the
Mann–Whitney U-test [9] and the Wilcoxon test [10] are
nonparametric tests designed to detect a single change point
and cannot provide a sequential use, as sensing datastreams
require. Differently, Mann– Kendall [11] and CUSUM [12] are
widely used tests adequate for a sequential analysis as the
recently introduced ICI test [13] and the recurrent Lepage one
[34] are. Section II focuses on the ICI-CDT and CUSUM
families for their effectiveness and flexibility, like the CI
(Computational Intelligence)-CUSUM CDT is able to host
features provided by other CDTs, e.g., Mann-Kendall. That
said, it is worth point out that any CDT can be used within the
suggested adaptive framework.

B. Resource-aware Adaptive Classifiers
As previously pointed out, here we couple the CDT test with

a reference classification application. The computational
intelligence literature suggests many models: Radial Basis
Functions (RBF), Feed-forward Neural Networks (FF-NN),
k-NN, Support Vector Machines (SVM) and a plethora of
hybrid solutions; reference [14] covers them all.

However, at a more careful analysis, the computational
complexity of many models does not scale well with the
number of training samples. As a consequence, an online
training phase required by the “reacting to change”
mechanisms becomes prohibitive for sensing units
characterized by limited resources, in terms of computational
ability and memory (both RAM and flash).

Without the pretention to be exhaustive, Table I presents
some figures for embedded architectures used in wireless
sensor networks whose processors are also popular within the
industry. Energy consumption is another hot topic, particularly
delicate when the sensing unit is battery powered (despite the
fact that energy harvesting mechanisms might be available). To
keep under control power consumption, duty cycle mechanisms,
adaptive sampling and CPU clock management solutions must
be envisaged [15]. It is clear that embedded Hw resources do
not allow the designer for considering CPU and memory eager
solutions and resources-aware algorithms should be designed
instead.

Passive classifiers, i.e., classification systems continuously
updating the classifier, such as those based on ensembles [16]

3

and possibly operating incrementally, e.g., [2], do not consider
the computational complexity or the memory requirement as a
constraint. As such, they cannot be considered, in general, as a
viable solution unless very simple strategies are envisaged.

TABLE I: COMPARISON AMONG SOME OFF-THE-SHELF EMBEDDED

SOLUTIONS (ENABLING THE WSN TECHNOLOGY).

Unit
Clock

frequency
MHz

Power
consumtion

(operational)

RAM
memory

Int/ext (B)

Flash
memory

Int/ext (B)
Mica Z 8 MHz 60 mW 4k/- 128/-
Telos B 8 MHz 4 mW 10k/- 48k/ 1M

Imote 2 13-416 MHz 31mW@13M
992mw@416M 256k/32M 32M/-

Start gate 400 MHz 1455 mW 64k/64M 32M/CF
card

Int stands for internal memory on the chip, external refers to the memory
available at the board level. – stands for not applicable.

Differently, active classification systems, e.g., those
requesting a detection of a change to activate the
reconfiguration mechanism, are intrinsically more sensitive to
the computation issue since training is carried out only when
really needed (we see the affinity with duty-cycling in CPUs).

Among active classifiers we select the Just-In-Time (JIT)
framework for its versatility and flexibility [17]. A JIT
classifier always exploits, during its operational life, incoming
labeled data. If the process is stationary, i.e., no concept drift
has been detected by the CDT, new data are used to improve the
accuracy performance of the classification system so that,
asymptotically with the number of available samples, it tends to
the optimal Bayes’s one in consistent classifiers. Conversely,
when a change is detected the classifier needs to be updated by
–conceptually- discarding obsolete data and be re-trained on
new ones. A main feature of JIT classifiers is that abrupt
concept drift always generate a classifier which asymptotically
tends to the optimal one, provided that supervised samples are
made available online (as in some industrial quality control
analysis where an operator supervisions the process and
inspects product samples for quality control). Of course, a
temporary decrease in accuracy might be expected when the
change is detected but, afterwards, the application reacts
promptly so as to recover it. In the case of gradual concept drift
(a drift type of change affecting the datastream), the CDT
detects the change as a sequence of small abrupt changes. Here,
the final performance depends on the ready availability of
sampled couples as well as the drift rate (the higher the drift rate
the lower the performance associated with the tracking ability).
A solution to mitigate the gradual concept drift case has been
suggested in [18].

However, since detection of concept drift requires
retrain/update the classifier so as to track non-stationarity, only
classifiers characterized by a complexity-aware training and
recall phases, e.g., k-NN and SVM machines, can be
considered as building blocks for designing resource-aware
classifiers. The classifier design must be carefully chiseled also
to keep under control the consumption of available resources.
This aspect is tackled in section IV.

III. CHANGE DETECTION TESTS
Denote by ()x t a sampled instance or a feature vector extracted
from the sensor signal at time t, e.g., the mean, the variance, the
coefficients of a polynomial fit, the coefficients of a linear time
invariant dynamic system [31], the parameters of a reservoir
network [33] or an Extreme learning machine [32] modeling
the datastream and computed over a non-overlapping finite
window open on the signal. In the following, the default
domain of is 1ℜ unless otherwise specified. By inspecting

()x t over time we wish to identify whether a change occurred
in the process generating ()x t or not and provide an estimate

t of the time instant 0t the concept drift occurred.

A. CUSUM-based CDT
The CUSUM test [12] has been designed within the control

community to detect changes in the probability density function
(pdf) of ()x t . The test assumes that ()x t is an independent and
identically distributed (i.i.d) random variable drawn from a
known pdf p

Θ0 parameterized in the parameter vector

1 2{ , , , }λθ θ θΘ = … , =λ Θ . For instance, if the pdf is Gaussian
the parameter vector contains the mean and the variance of the
distribution. CUSUM assumes that, following concept drift, the
parameter vector 0Θ changes to a known 1Θ with new

associated with a known pdf p
Θ1 . The method requires then to

compute

 R(t) = ln
p

Θ1 x τ()()
p

Θ0 x τ()()τ

t

∑ (1)

over the data set and evaluate the minimum value

()= (())1m t min Rt ττ≤ ≤ . CUSUM detects a change at time t

when ()- ()>R t m t T , T being a threshold set by the user. The
strong assumptions related to the availability of the pdfs as well
as the parameter configurations 0Θ , 1Θ and T limit the
applicability of the CUSUM test which, however, is
particularly appreciable for its effectiveness and simplicity.

To overcome the limits of CUSUM [20] suggested the
CI-CUSUM CDT. The extended test, which assumes the i.i.d
hypothesis now for a vector of features () lx t ∈ℜ , does not

require availability of p
Θ0 which is derived by invoking the

central limit theorem. The parameter vector 0Θ of the
Gaussian pdf contains the mean and covariance matrix, while a
PCA technique is considered to keep under control the size
–and hence the computational complexity-, of the input features.
The post-change parameter configuration 1Θ can be generated

so as to model the “we are not more in 0Θ ” case and a straight
CUSUM test can be applied. Threshold T is set as the maximum
value R(t)-m(t) estimated on the training set (or the test set if

x t()

()x t

4

many data are available). The estimate t of the concept drift
occurrence time is always an upper bound of the real one since
the latency introduced by the detection method is induced by
the windowing mechanisms needed to generate independent
samples.

For its effectiveness and simplicity the CI-CUSUM CDT is a
good candidate for designing active adaptive classification
solutions following the just-in-time framework.

B. ICI-based CDT
The ICI rule [21], [22] is a method for optimally regularizing

data by means of a polynomial regression computed on
adaptive supports. The ICI rule operates on not overlapping

sequences of observations/features ruled by ()()2,()= tz t G μ σ .

[13] suggests to use features such as the mean and the pooled
variance estimated from non overlapping sequences of ()x t .
Such features, thanks to the central limit theorem and an ad-hoc
power transform for the estimated variance satisfy the gaussian
hypothesis requested by the method.

In its current version the ICI-CDT requires streams of data
that are scalar and then proceeds sequentially with the analysis.
However, when the envisaged problem is multivariate the
method would request the estimate of the covariance matrix, a
computationally intensive operation that requires availability of
a large number of samples. A viable solution is to consider a
diagonal covariance matrix: in this way signals are considered
independent and the basic scalar ICI-CDT can be used.
Interestingly, [23] introduces a variant of the CDT that provides
a refinement procedure leading to an improved estimate for t .

The ICI-CDT is particular sensitive to concept drift but also
introduces structural false positives as time passes. It is clear
that such a problem must be removed if we are designing an
adaptive application for an industrial process even if false
positives basically require the classifier and the CDT to be
unnecessary retrained. A solution to the problem was obtained
with a hierarchical version of the ICI-CDT as presented in the
following section.

C. Hierarchical CDT
False positive reduction in concept drift detection can be

addressed by considering a hierarchical CDT (H-CDT). The
H-CDT test is composed of two levels. The first one runs a
CDT test providing an alarm (either a real concept drift or a
false positive detection) and t to the second level CDT. Based
on t the second level CDT partitions the datastream in two
intervals characterizing the states of the process before and
after the supposed change. Then, a multivariate hypothesis test
based on the Hotelling’s T square statistic [6] is executed.

The Hotelling test confutes or accepts the concept drift
detection proposed by the first level CDT and its outcome is the
final one. Basically, Hotelling verifies if the feature means (of
sample mean and variance) before and after the change are the
same (i.e., their statistical difference is null).

Since the ICI-CDT is particularly effective in detecting
changes and is characterized by a low-computational
complexity, it is a perfect tool to detect concept drift when

coupled with the Hotelling test to configure a H-CDT.

Algorithm I: the Hierarchical CDT (H-CDT)

Configure the first-level CDT on the training set
while (1)

acquire a new observation
if (ICI-CDT detects concept drift)

 Estimate the time of the change t
if (Hotelling validates the change) concept drift detected

 else re-learn the parameters of ICI-CDT
endif

endwhile

The high level algorithm for the H-CDT is given in
Algorithm I. Interestingly, the H-CDT allows the ICI-CDT to
be reconfigured online after a false positive is detected so as to
improve performance over time.

IV. RESOURCE-AWARE ADAPTIVE JUST IN TIME CLASSIFIERS
Let KB be the knowledge base of the classifier, namely the set
of N couples { (), ()}x t y t available at a given instant of time to

characterize it. Consider inputs x t() ∈ ℜl and, without loss

of generality, outputs { }() 1,1y t ∈ − .

A. Adaptive k-NN
The k-nearest neighbor algorithm (k-NN) is a statistic

classification method where the label to be assigned to the input
sample is that of the majority of its k nearest neighbors.

Algorithm II: JIT adaptive k-NN classifier

Estimate k through LOO applied to training samples KB
Configure the k-NN classifier and the CDT
while (1)
 if (new knowledge IKB is available)
 KB=IKB KB;
 endif
 if (CDT= nonstationary)
 Remove obsolete knowledge from KB;
 Estimate k by means of LOO applied to KB
 Configure the CDT
 endif

Classification=k-NN(x, k, KB);
 endwhile

The k-NN classifier, e.g., see [24], is the simplest among the

consistent classifiers (i.e., it asymptotically tends to the optimal
Bayes classifier under mild hypotheses on k and N) since a
proper training phase is not required. An euclidean distance is
commonly used to compute the distance between two instance
vectors.

 Despite the fact that small values of k are generally used, in
the practice one must be aware that when N increases similarly
k has to (but less than N) to grant consistency. As such, for
increasing values of N one needs to re-estimate k, e.g., as
suggested in [17], [24].

5

The adaptive JIT algorithm based on k-NN is given in
Algorithm II, which is easy to follow (LOO stands for Leave
One Out). The key points of the algorithm can be summarized
as: a) if we are in a stationary condition and new information is
coming then it must be exploited to asymptotically tend
towards the optimal classifier; b) when a change is detected
with a CDT obsolete information must be discarded; c) the
CDT must be reconfigured on the new state. Again, the
approach is conceptually aligned with Piaget’s theory.

B. Adaptive SVM
The SVM kernel classifier [25] is

 () ()
1

() ,i i i

N

i

f x sgn x b sgn y K x x bω α
=

⎛ ⎞
= ⋅ + = +⎜ ⎟

⎝ ⎠
∑ (2)

where parameters ω (vector normal to the separating
hyperplane) and b (hyperplane offset) characterize the
classifier. ω and b are determined by solving the optimization
problem

min(1
2

ω
2
+C

i=1

N

∑ξ
i
) (3)

subject to conditions ݕ൫ሺ߱ · ሻݔ ܾ൯ 1 െ ߦ , ߦ 0 ,
i=1,…,N. 0C > is a cost positive parameter, ߦ the i-th slack
variable and

 ()
2

2

,
, i j

i j

x x
K x x exp

σ

⎛ ⎞−
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

is a kernel function, here chosen to be a radial basis function
parameterized in ߪ. Parameters C and ߪ significantly influence
the performance of the classifier and can be selected through
K-fold cross-validation [26].

(3) can be cast in a dual form [25] leading to coefficients iα
which, when different from zero, identify the Support Vectors
(SVs). SVs fully describe the classification problem given the
available data and can be intended as pivot points to the
classification method. Since the number d of SVs is smaller or
equal (rare event) than N, we recommend to consider the SVs
instead of the N couples in the KB to classify new instances.
The use of SVs saves memory. To apply something similar to
k-NN we should use condensing techniques [27] which,
however, are very expensive in terms of requested
computation.

Important for our algorithm, each supervised sample x୧, y୧
satisfies the Karush-Kuhn-Tucker (KKT) condition [25]

ߙ ൌ 0

 ֜
ሻݔ݂ሺݕ 1;

0 i Cα< < () 1 i iy f x⇒ = ;

 i Cα = ⇒ () 1i iy f x ≤

We comment that samples satisfying the KKT conditions do
not change the SVs and, as such, the structure of the classifier.
It follows that, within an incremental learning strategy, only
those samples violating the KKT condition should be kept for

improvement and stored, the others removed. Of course, if
outliers can be present, they should be identified in advance and
discarded.

A JIT classifier based on SVs must then require that only
those new samples violating the KKT must be added to the
incremental knowledge base (IKB). Since insertion of a new
sample in the SV set represents a perturbation to the method in
stationary conditions, we need to merge KB with IKB and
re-train the SVM when the size of IKB is above a threshold Th
(sophisticated methods might think of evaluating the novel
information content associated in IKB before retraining the
classifier).

Differently, when concept drift is detected, data contained in
KB become obsolete, hence negatively impacting on
performance. As such they must be removed and only the most
recent ones kept. The final algorithm of a SVM-based active
classifier is given in Algorithm III.

Algorithm III: JIT adaptive SVM classifier

Configure the test CDT and train classifier SVM on training set
 ;ܤܭ
ܤܭ ൌ ݊ ;ܤܭ ݂ ݏݎݐܿ݁ݒ ݐݎݑݏ ൌ ܤܭܫ ;| ܤܭ | ൌ 0;
While (1) {
 Acquire sample ݔ;
 if(new supervised knowledge is available)
 Insert samples ሺݔ, ;ܤܭܫ ሻ violating the KKT condition inݕ
 endif
 if(CDT (ݔ) = nonstationary)
ܤܭ ൌ ;ݏ݈݁݉ܽݏ ݀݁ݏ݅ݒݎ݁ݑݏ ݓ݁݊ ݂ ݏ݈݁݉ܽݏ ܰ ݐݏ݈ܽ
 Train SVM and CDT on ܤܭ;
 KB= support vectors of ܤܭ; ݊ ൌ ;| ܤܭ |
 else
 ݊ூ ൌ ;|ܤܭܫ|
 if(݊ூ/݊ ݄ܶ)
ܤܭ ൌ ܤܭ ڂ ;ܤܭܫ
 Train SVM and CDT on ܤܭ;
 KB= support vectors of ܤܭ;
 ݊ ൌ ܤܭܫ ;| ܤܭ | ൌ 0;
 endif
 endif
 Classification=SVM (x , KB , C ;(ߪ,
endwhile

C. Complexity Aspects
As shown in table II the k-NN and the SVM classifiers are

particularly appealing candidates as resource-aware classifiers
for their contained complexities.

Again, N represents the number of samples in the KB, k is the
number of samples to be considered in the neighborhood, d is
the number of support vectors in KB. In general, we have that
d N< (and in some applications d N<<) which favors the
SVM classifier. However, as pointed out in [28], the
computational cost of solving the quadratic problem required
by the training phase in SVM grows at least as 2N for small C
values and up to 3N for large C, as also experimentally pointed
out in [29].

6

TABLE II: COMPLEXITY OF K-NN AND SVM CLASSIFIERS

Complexity k-NN SVM
Computational

(Training) O(1) () ()2 3O N O N−

Computational
(Recall)

O kN log N() ()O d

Memory ()O N ()O d

However, in many applications one hardly needs to estimate

the optimal solution for the quadratic problem. Moreover, the
training time for a linear SVM to reach an expected level of
error actually decreases as the training set size increases [30];
as such, for practical problems one should expect a 2N
complexity.

From table II it is clear that a k-NN classifier is to be
preferred for training reasons while the SVM for memory and
recall. That said, the final decision depends on the particular
application and on the specific balance between the train and
recall activities, a critical issue in incremental active solutions
since the classifier needs to be reconfigured following concept
drift. At the same time, in stationarity conditions, the k-NN
scales badly in memory and computation time during the recall
phase. Here condensing techniques [27] should be considered
to keep under control the increase in N at the cost of a not
negligible computational time, which makes the approach not
viable.

V. EXPERIMENTAL SECTION
The experimental section aims at comparing accuracy

performance and computational and memory complexity of the
CI-CUSUM and the H-CDT tests coupled with the active k-NN
and the SVM classifiers. What presented is a new set of
experiments, a synthetic one and an industrial one, which also
extends that given in [19].

Here, deliberately, we consider at first a synthetic
experiment characterized by classification complexity well
above that of most real applications. The classification
framework is that suggested in [14], here reported for
completeness. More specifically, the experiment constructs a
random pdf composed of a mixture of ten gaussians computed
as follows. Generate 10 mean values 1

iμ , i ∈ 1,10{ } from a

Gaussian two-dimensional distribution ()[1,2] ,TN I

representative of class 1 and 10 mean values 2
iμ ,

i ∈ 1,...,10{ } from a multivariate Gaussian distribution

N [2,1]T , I() . Now, generate for each class, 200 observations by

picking a random mean 1
iμ and produce a feature sample

()1, / 5iN Iμ . The same procedure is repeated for the second

class. The final classification problem, composed of 400
training data, is very complex, with a strong overlap between
the two classes as can be seen in Figure 2. This situation makes
change detection a very complex task. During operational time
new samples are provided according to the above distributions
and need to be classified by the active classifiers. Perturbations

are then generated in the test dataset following both the abrupt
and drift change model affecting all the means of the classes.

More specifically, the abrupt change affects the (), / 5j
iN Iμ ,

j ∈ 1, 2{ }, i ∈ 1,...,10{ } distributions according to a

multiplicative perturbation model (), 1j j
p i iμ μ λ= + where

{ }0.1,0.2,0.5λ = is the intensity of the perturbation. In the

drift case the used model is (), 1 /j j
p i i t Tμ μ λ= + so that, at

time nT incremental with n the perturbation assumes value
(), 1j j

p i i nμ μ λ= + . In any case the perturbations influence the
magnitude of the affected value of λ .

A set of 14600 data was generated to test the methods. When
a change is detected the classifier automatically reacts to track
the change.

Fig. 2. A dataset for the two-dimensional synthetic experiment. In circled blue
data from the first class, in crossed red those of the second class. It can be seen
the complex mixture of Gaussian structure for the pdf.

The industrial dataset is composed of 28 datastreams taken
from couples of photodiodes receiving, over time, X-ray
radiations at four different energies. Each datastream is
composed of 12000 16-bit measurements (6000 per sensor); the
goal is to classify the sensor providing the measurement. The
training set is composed of the first 400 instances.

The figures of merit considered to assess the performance of
the CDTs are,
• False positive (FP). FP measures the percentage of changes

detected by the CDT when the change is not there;
• False negative (FN). FN detects the percentage of changes

missed by the CDT;
• Latency (L). Latency measures the time (in samples)

required to detect a change;

and, for the classifier,
• Accuracy. Accuracy measures the accuracy of the JIT

classification system over time after training (test phase);
• Computational time. The computation time measures,

given a reference Hw platform (Asus Intel i5 core running
@ 2.4GHz, 4G RAM), the averaged time per sample
requested to run the JIT classifier;

-3 -2 -1 0 1 2 3 4 5
-2

-1

0

1

2

3

4

5
A Dataset For The Experiment

class 1
class 2

7

• Memory usage. It represents the maximum number of
samples over test data stored in the KB (samples data for
the k-NN classifier, SVs for the SVM).

Where it does apply experiments have been averaged over 50
runs for the synthetic dataset and 28 runs for the real one.

A. Detecting Changes
The experiments on the synthetic dataset were executed as

discussed above and led to results given in table III where we
present the expected value of latency and, between parenthesis,
the standard deviation.

As expected we see that FN and latency decrease with the
increase of the intensity of the perturbation affecting mean
values in both CDTs. However, the H-CDT is always better
than the CI-CUSUM both in terms of FN and latency. This is
associated with the fact that the Hotelling’s test introduces a
further control on the proliferation of false positives (we set the
gamma parameter of H-CDT at 0.8 to induce a very sensitive
CDT. The presence of some FPs introduce a positive
conservative approach as we will see in the sequel).

TABLE III: THE COMPARED PERFORMANCE OF THE CDTS

 CI-CUSUM CDT H-CDT
 λ FP FN L FP FN L

A
br

up
t

0.1 0% 98% 2221(0) 26% 2% 1297
(1850)

0.2 0% 72% 1508.1
(1139.3) 20% 0% 254.4

(444.2)

0.5 0% 2% 446.7
(497.5) 10% 0% 186.8

(426.5)

D
rif

t

0.1 2% 100
% -(-) 32% 24% 3432

(3535)

0.2 2% 98% 1081(0) 18% 2% 1124.1
(1556.7)

0.5 0% 36% 1127.3
(761.3) 10% 0% 218.4

(413.6)

B. Reacting to Changes
The second set of experiments refers to 1) the case where

inputs are affected by a series of concept drift; 2) data coming
from the industrial datastreams.

A synthetic dataset
An abrupt change affecting the mean value, λ = 0.5 is

injected at sample t1 = 3000 followed by a drift within time

interval [2t = 6000, 3t = 10000] λ =1; At time t3 the means go
back to the nominal ones and a change in the variance

2 2(1)λσ λ σ= + , λ = 0.5 takes place.
The signature profile of the change is given in figure 3 where

the abscissa shows the values assumed by the first feature over
time. Detection performance of the two CDTs is shown in
Figure 3 (lower plot); compared results are given in table IV.
From the figure we see that H-CDT always detects the change,
with an obvious delay (tests need to acquire data to provide
enough confidence to support the “change” statement), while

CI-CUSUM introduces false negatives. It is worth recalling that
the proposed systems react to each detected change by
activating the active modality for the envisaged classifier.
However, at the same time, the envisaged classifiers might
adapt also when the change is not detected provided that new
supervised samples are provided.

Fig. 3. The time profile of the change (upper plot), and
 the instants of time a change is detected by the CI-CUSUM and the H-CDTs
(lower plot). In the abscissa we have the test samples.

TABLE IV: COMPARED PERFORMANCE ON THE SYNTHETIC DATASET

Method Classification

Accuracy
Computation

Time (ms)
Memory

Usage (couples)
SVM +

CI-CUSUM 82.28%(0.008) 1.062(0.080) 695(148.3)

SVM+H-CDT 81.94%(0.010) 0.440(0.079) 371(69.7)

k-NN +
CI-CUSUM 83.25%(0.005) 1.096(0.088) 2214(353.4)

k-NN+H-CDT 82.02%(0.013) 0.721(0.139) 1298(235.1)

Static k-NN 81.26%(0.013) 0.095(0.005) 400(0)

Static SVM 79.46%(0.012) 0.032(0.003) 154(11.4)

Fig. 4. The average accuracy of the classifiers over time; the reference CDT is
the H-CDT.

Results are given in table IV; computation time must be

intended as the expected computation burden per sample.
Notation X(Y) refers to expected value X with standard
deviation Y. Static k-NN and static SVM refer to the case
where the classifiers are static and not adaptive.

From the table we see that the static versions of the
classifiers are less performing than the adaptive ones and that
the best performing classifier is the k-NN+CI-CUSUM. We
comment that the datastream contains three stationary plateau

0 2500 5000 7500 10000 12500 15000
-5

0

5

10

0 2,500 5,000 7,500 10,000 12,500 15,000
0

0.2

0.4

0.6

0.8

1

CI-CUSUM
H-CDT

0 2500 5000 7500 10000 12500 15000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

SVM+H-CDT
KNN+H-CDT

8

where the process is stationary and recall that, in stationary
conditions, the JIT classifier with k-NN tends towards the
optimal Bayes one. Even if CI-CUSUM is less effective in
detection, the supervised samples are inserted in the KB and
mitigate occurrences of false negatives. However, from the
complexity point of view the solution SVM+H-CDT is clearly
preferable than the others with a 63% improvement in
computation time w.r.t the second best one (also based on
H-CDT) and a 87% in memory savings (compared to the
SVM+CI-CUSUM solution). The light computation required
by H-CDT (about 0.06ms to run the two levels hierarchical test)
vs. the CI-CUSUM (0.5ms) makes the difference in the
computation cost. This is a direct consequence of CI-CUSUM,
which is a computationally intensive CDT. In fact, in order to
keep generality w.r.t. the pdf generating the datastream (or the
derived features) it needs to compute several numerical features.
In particular, in addition to the mean and the variance values,
the CDT computes features related to the pdf and its cumulative
density function as well as others inspired by the Mann–
Kendall and the CUSUM CDTs. A pdf-free test, as CI-CUSUM
is, provides a very high flexibility and generality in the pdf at
the cost of an increased computational load and latency as we
have seen in table III. Differently, ICI inspects solely the mean
and the transformed variance of x(t), which are features
characterized by a Gaussian distribution. Such implicit priors
impact both on results and computational complexity.

When the best active SVM-based and k-NN solutions are
compared, the former introduces a gain on the latter of about
250% in memory savings. We refer to table III to further
investigate results. As far as memory is concerned we should
always expect SVM to be better than k-NN since d, the number
of support vectors, is smaller-equal than N, the number of
available samples. However, when computational complexity
is envisaged, we cannot decide a priori which classifier should
be considered. In fact, computational complexity is function of
the number of times a change is detected (and training
requested). We shall expect that SVM, characterized by a costly
training and a cheap recall phases should be preferred when
concept drift are infrequent, otherwise k-NN might be better.
This issue is application specific and should be decided
application by application.

In order to scale the computation time performance of table
IV (Matlab) to an embedded system, we executed a numerical
intensive application composed of multiplications, sums and
divisions both in Matlab and two embedded processors. The
first embedded microprocessor is the 8 bits Arduino
ATMEGA328P working at 16MHz, the second one the 16 bits
STM32F103ZET6 one running at 72MHz. The ratio between
the two execution times is taken as a rough estimate of the gain
that the particular pc-based platform provides over the
embedded system. It comes out that the Arduino processor is
78.2 times slower than corresponding execution in Matlab
whereas the STM32 one is only 10.9. With these figures, the
expected execution time per sample would be, in the
SVM+H-CDT case of table IV, 34ms for the Arduino and
4.5ms for the STM32, respectively.
 As a last note we comment about figure 4. We see how

averaged performances are kept over time despite the changes.
In fact, a reaction to the detection the active mechanism is
enabled in addition to the adaptive mechanism intrinsic with the
classifiers and accuracy are high. The fact that k-NN is slightly
worse in the average after sample 10000 is associated with the
fact that the change, even if detected, keeps in the KB of the
k-NN samples related to the drift (only old samples are
discarded and the drift operated for long time). Afterwards, new
data cause the classifier to steadily improve its accuracy: new
incoming data are inserted in the KB of the k-NN, made
available and immediately used. Differently, the SVM either is
retrained following a change detection or stores new samples
not satisfying the KKT conditions in the incremental KB (IKB)
and, only when they represent a significant percentage of the
SVs present in KB a new training procedure is activated to
redesign the classifier (the new SVs are identified). This is what
happens with the SVM of figure 4.

As a final note, it is worth point out that false positives
introduce an unnecessary retrain of the classifier which is
positive to track drifts and changes hardly detectable for their
magnitude at the expenses of a higher cost in computation.

A real-world dataset

An example of a real datastream is shown in Figure 5 where
also its detection performance of the methods is provided. Here,
the H-CDT detects all changes, the CI-CUSUM only the first
one, characterized by a larger change in the mean.

Fig. 5. Photodiodes sensing. The input radiation changes and introduces four
abrupt changes in the datastream (upper plot); the instants of time a change is
detected by the CI-CUSUM and the H-CDTs are also given (lower plot).

The tracking-to-change experiments were run with results
given in table V. At first the advantages introduced by
adaptation are evident when we compare accuracies provided
by the JIT classifiers with those of static solutions. Again, SVM
is advantageous over k-NN in terms of memory consumption
and the use of H-CDT provides a gain in computation
complexity over the CI-CUSUM.

Here, the best accuracy performances are associated with
SVM classifiers even if k-NN performs well thanks to the
effective detection ability provided by H-CDT. However, as
mentioned in the previous experiment, the choice of the optimal
classifier is application dependent.

0 2000 4000 6000 8000 10000 12000
1.4

1.45

1.5

1.55

1.6
x 104

class 1
class 2

0 2000 4000 6000 8000 10000 12000
0

0.2

0.4

0.6

0.8

1

CI-CUSUM
H-CDT

9

 TABLE V: COMPARED PERFORMANCE ON REAL DATASET

Method Classification
Accuracy

Computation
Time (ms)

Memory
Usage

(couples)
SVM +

CI-CUSUM 73.05%(0.069) 0.672(0.073) 887(226.9)

SVM+H-CDT 73.39 %(0.073) 0.243(0.032) 551(108.7)

k-NN +
CI-CUSUM 70.40%(0.063) 0.577(0.028) 1688(221.1)

k-NN+H-CDT 73.37%(0.059) 0.426(0.048) 937(28.2)

Static k-NN 54.22%(0.014) 0.050(0.001) 400(0)

Static SVM 45.16%(0.072) 0.032(0.004) 269 (49.8)

Fig. 6. The average accuracy of the classifiers over time; the reference CDT is
the H-CDT.

The evolution over time of the accuracy performance
(averaged over runs) is given in figure 6. The “peaks” are
associated with the detection phase after which reaction takes
place. The fact that SVM is very responsive implies that many
samples violate here the KKT conditions inducing the classifier
to be retrained in addition to retrains induced by detection of
changes in stationarity. De facto, given the abrupt type of
perturbations, every time we retrain the SVM we generate a
classifier that works in locally stationary conditions.
Interestingly, the performance of the classifier improves over
time despite the abrupt changes. This implies a structural
concept drift in the pdf of the process generating the data which
evolves towards problems whose classification complexity
reduces.

VI. CONCLUSION
Designing applications able to react just in time to changes

affecting the stationarity of datastreams is a main feature for
any intelligent embedded system dedicated to sensing
applications. Hardware resources are here finite both in terms
of computational power and memory usage hence pushing the
designer towards resource-aware solutions. The paper, by
referring to a classification application, compares two
interesting candidates as CDTs, namely the CI-CUSUM and
the ICI CDT families. At the same time it envisages active
k-NN and SVM classifiers, modified to host a CDT. The
outcome classifier is able to detect changes in the incoming
samples and react accordingly by updating the classifier to
track the change and maximize accuracy. It comes out that the
H-CDT is lighter and best performing both in terms of false

positives and negatives than the CI-CUSUM rival which,
however, is more general and able to detect more subtle concept
drift as those not affecting the mean and the variance of the pdf
generating the data (or derived features). We surely recommend
the use of the H-CDT (or the newly introduced sequential
version of the LP-CPM [34]) as CDT in intelligent embedded
systems. As such, the H-CDT code has been made available
and can be downloaded from the link given in [38]. If we move
to the Just-In-Time adaptive classifier issue then we cannot
immediately claim whether a SVM or a k-NN core should be
considered. While memory consumption is always in favor of a
SVM-based solution, computational complexity depends on the
frequency a change is detected in the datastream and, as such, is
application dependent. Both algorithms should be tested for
computational complexity as we did in the experimental section
before being ported to the embedded system. The use of CDT
introduces, a priori, false positives FP and false negatives FN.
FP mainly introduce an unnecessary retrain of the classifier
with an increase of the computational complexity and energy
consumption. In terms of accuracy they might negatively affect
the k-NN since old samples are removed (when they should be
not). However, this introduces a mechanism which is beneficial
if subtle drift or small magnitude changes affect the datastream
since a periodic training is induced. FN, a priori unwished
events, are here strongly kept under control by tolerating FP
and mitigated by the particular nature of the adaptive classifiers.
In fact, both classifiers introduce implicit adaptation
mechanisms by taking advantage of new supervised samples
either by inserting them in the knowledge base (k-NN) or in a
suitable set (SVM) whenever they violate the KKT conditions.

REFERENCES
[1] H. Flavell, “Piaget’s legacy,” Psychol. Sci., vol. 7, no. 4, pp. 200–203, Jul.

1996.
[2] R. Elwell and R. Polikar, “Incremental learning of concept drift in

nonstationary environments,” IEEE Transactions on Neural Networks,
vol. 22, no. 10, pp. 1517–1531, Oct. 2011.

[3] G.Acciani, G. Brunetti, and G. Fornarelli, “Application of neural
networks in optical inspection and classification of solder joints in surface
mount technology,” IEEE Transactions on Industrial Informatics, vol. 2,
no.3, pp. 200–209, 2006.

[4] A. Rizzo and M. G. Xibilia, “An innovative intelligent system for sensor
validation in tokamak machines,” IEEE Transactions on Control Systems
Technology, vol.10, no. 3, pp. 421–431, 2002.

[5] E. Athanasopoulou and C. N. Hadjicostis, “Probabilistic approaches to
fault detection in networked discrete event systems,” IEEE Transactions
on Neural Networks, vol.16, no.5, pp.1042–1052, 2005

[6] I. W. Burr, Statistical Quality Control Methods. New York: Dekker,
1976.

[7] G. A. F. Seber, Linear Regression Analysis. New York: Wiley, 1976.
[8] R. Gnanadesikan, Methods for Statistical Data Analysis of Multivariate

Observations. New York: Wiley, 1977.
[9] R. J. Herrnstein, D. H. Loveland, and C. Cable, “Natural concepts in

pigeons,” J. Exp. Psychol.: Animal Behavior Process, vol. 2, pp. 285–302,
1976.

[10] F. Wilcoxon, “Individual comparisons by ranking methods,” Biometrics,
vol. 1, pp. 80–83, 1945.

[11] M. Kendall, Rank Correlation Methods, 4th ed. London, U.K.: Griffin,
1975.

[12] B. F. J. Manly and D. I. MacKenzie, “A cumulative sum type of method
for environmental monitoring,” Environmetrics, vol. 11, pp. 151–166,
2000.

[13] C. Alippi, G. Boracchi, and M. Roveri, “Adaptive classifiers with
ICI-based adaptive knowledge base management,” in Artificial Neural

0 2000 4000 6000 8000 10000 12000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

SVM+H-CDT
KNN+H-CDT

10

Networks (ICANN 2010), Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2010, vol. 6353, pp. 458–467.

[14] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning, Springer, 2009

[15] G. Anastasi, M. Conti, M. D. Francesco, and A. Passarella, “Energy
conservation in wireless sensor networks: A survey,” Ad Hoc Networks,
vol. 7, pp. 537–568, 2009

[16] L. Rokach, “Ensemble-based classifiers,” ACM Journal Artificial
Intelligence Review, vol. 33, no. 1-2, pp. 1–39, Feb. 2010.

[17] C. Alippi, G. Boracchi, and M. Roveri, “Just-in-time adaptive classifiers –
part II: Designing the classifier,” IEEE Transactions on Neural Networks,
vol. 19, no. 12, pp. 2053–2064, Dec. 2008.

[18] C. Alippi, G. Boracchi, and M. Roveri, “An effective just-in-time
adaptive classifier for gradual concept drifts,” in Proceedings of
International Joint Conference on Neural Networks, San Jose, California
July 31–Aug. 5, 2011, pp. 1675–1682.

[19] C. Alippi, L. Bu, and D. B. Zhao, “SVM-based just-in-time adaptive
classifiers,” in ICONIP 2012, Part II, Lecture Notes in Computer
Science. Springer Berlin/ Heidelberg, 2012, vol. 7664, pp.664–672.

[20] C. Alippi and M. Roveri, “Just-in-time adaptive classifiers – part I:
detecting nonstationary changes,” IEEE Transactions on Neural
Networks, vol. 19, no. 7, pp. 1145–1153, July 2008.

[21] A. Goldenshluger, A. Nemirovski, “On spatial adaptive estimation of
nonparametric regression,” Mathematical Methods of Statistics, vol. 6,
pp.135–170, 1997

[22] V. Katkovnik, “A new method for varying adaptive bandwidth selection,”
IEEE Transactions on Signal Processing, vol. 47, no. 9, pp. 2567–2571,
1999.

[23] C. Alippi, G. Boracchi, and M. Roveri “A just-in-time adaptive
classification system based on the intersection of confidence intervals
rule,” Neural Networks, vol. 24, no. 8, pp. 791–800, 2011.

[24] K. Fukunaga, Introduction to Statistical Pattern Recognition. New York:
Academic, 1972.

[25] N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector
Machines, Cambridge University Press, 2000

[26] H. Shen, H. Xi, and G. Xie, “The improved grid-search algorithm used in
the fault diagnosis by SV,” Mechanical Engineering & Automation,
pp.108–110, 2012

[27] G. W. Gates, “The reduced nearest neighbor rule,” IEEE Transactions on
Information Theory, vol. 18, no. 3, pp. 431–433, May 1972.

[28] A.Bordes, S. Ertekin, J. Waston, and L. Bottou, “Fast kernel classifiers
with online and active learning,” Journal of Machine Learning Research,
vol. 6, no. 1, pp. 579–1619, 2005.

[29] R. Collobert and S. Bengio, “SVM torch: support vector machines for
large-scale regression problems,” Journal of Machine Learning Research,
vol. 1, pp. 143–160, 2001.

[30] S. Shalev-Shwartz and N. Srebro, “SVM optimization: inverse
dependence on training set size,” in Proceedings of the 25th International
Conference on Machine Learning (ICML), Helsinki, Finalnd, July 2008,
pp.928–935.

[31] R. Isermann, Fault-Diagnosis Systems: An Introduction from Fault
Detection To Fault Tolerance. Springer Verlag, 2006.

[32] G. B. Huang, Q. Y. Zhu, and C. K. Siew, “Extreme learning machine:
theory and applications,” Neurocomputing, vol. 70, no. 1, pp. 489–501,
2006.

[33] B. Schrauwen, D. Verstraeten, and J. V. Campenhout, “An overview of
reservoir computing: theory, applications and implementations,” in
Proceedings of the 15th European Symposium on Artificial Neural
Networks. Bruges, Belgium, April 25-27, 2007, pp. 471–482.

[34] G. J. Ross, D. K. Tasoulis, and N. M. Adams, “Nonparametric monitoring
of data streams for changes in location and scale”, Technometrics, vol. 53,
no. 4, pp. 379–389, 2012

[35] P. Padhy, R. K. Dash, K. Martinez, and N. R. Jennings, "A utility-based
sensing and communication model for a glacial sensor network", in
Proceedings of the Fifth International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS'06), Hakodate, Japan, May 8–
12, 2006, pp. 1353–1360.

[36] C. Alippi, G. Anastasi, M. Di Francesco, and M. Roveri, “An adaptive
sampling algorithm for effective energy management in wireless sensor
networks with energy-hungry sensors,” IEEE Transactions on
Instrumentation and Measurement, vol. 59, no. 2, pp. 335–344, Feb.
2010.

[37] C. Alippi, G. Boracchi, and M. Roveri, “Just in time classifiers for
recurrent concepts,” IEEE Transactions on Neural Networks and
Learning Systems, DOI:10.1109/TNNLS.2013.2239309, to be published.

[38] http://www.i-sense.org/open_library.html

Cesare Alippi (SM’94–F’06) received the degree in
electronic engineering cum laude in 1990 and the
PhD in 1995 from Politecnico di Milano, Italy.

Dr. Alippi is a Full Professor of information
processing systems with the Politecnico di Milano.
He has been a visiting researcher at UCL (UK), MIT
(USA), ESPCI (F), CASIA (CN). He holds 5 patents
and has published about 200 papers in international
journals and conference proceedings. His current
research addresses adaptation and learning in
non-stationary environments and Intelligent

embedded systems. Prof. Alippi is Vice-President Education of the IEEE
Computational Intelligence Society (CIS), Associate editor (AE) of the IEEE
Computational Intelligence Magazine, past AE of the IEEE Transactions on
Neural Networks, the IEEE Transactions on Instrumentation and
Measurements (2003-09) and member and chair of other IEEE committees
including the IEEE Rosenblatt award. In 2004 he received the IEEE
Instrumentation and Measurement Society Young Engineer Award. In 2011
was awarded Knight of the Order of Merit of the Italian Republic.

Derong Liu (S'91-M'94-SM'96-F'05) received the
Ph.D. degree in electrical engineering from the
University of Notre Dame in 1994. Dr. Liu was a Staff
Fellow with General Motors Research and
Development Center, Warren, MI, from 1993 to 1995.
He was an Assistant Professor in the Department of
Electrical and Computer Engineering, Stevens Institute
of Technology, Hoboken, NJ, from 1995 to 1999. He
joined the University of Illinois at Chicago in 1999,
and became a Full Professor of electrical and computer
engineering and of computer science in 2006. He was

selected for the "100 Talents Program" by the Chinese Academy of Sciences in
2008. He has published 10 books. Dr. Liu has been an Associate Editor of
several IEEE publications. Currently, he is the Editor-in-Chief of the IEEE
Transactions on Neural Networks and Learning Systems, and an Associate
Editor of the IEEE Transactions on Control Systems Technology. He was an
elected AdCom member of the IEEE Computational Intelligence Society
(2006-2008). He received the Faculty Early Career Development (CAREER)
award from the National Science Foundation (1999), the University Scholar
Award from University of Illinois (2006-2009), and the Overseas Outstanding
Young Scholar Award from the National Natural Science Foundation of China
(2008).

Dongbin Zhao (M’06-SM’10) received the B.S.,
M.S., Ph.D. degrees in material processing
engineering from Harbin Institute of Technology,
Harbin, China, in Aug. 1994, Aug. 1996, and Apr.
2000 respectively.

Dr. Zhao was a postdoctoral fellow with Tsinghua
University, Beijing, China, from May 2000 to Jan.
2002. He became an associate professor, and a
professor in 2002 and 2012 respectively at the
Institute of Automation, Chinese Academy of
Sciences, China. He has published one book and over

thirty international journal papers. His current research interest covers
computational intelligence, adaptive dynamic programming and applications.

Dr. Zhao has been an Associate Editor of the IEEE Transactions on Neural
Networks and Learning Systems, and Cognitive Computation, and the
Newsletter Editor of IEEE Computational Intelligence Society. He received
five scientific awards, including the Third Scientific Award of Beijing (2010).

Li Bu received the B. S. degree in electronic
engineering and automation in 2012 from the Chinese
University of Mining and Technology. Miss Bu is now
a graduate in the State Key Laboratory of Management
and Control for Complex Systems, Institute of
Automation, Chinese Academy of Sciences. She has
published one conference paper and submitted two
journal papers. His current research interest lies in the
area of adaptation and learning in non-stationary
environments and computational intelligence.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for export to IEEE PDF eXpress. May 2005. PaperCept.)
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

